I test di ipotesi o test di significatività comportano il calcolo di un numero noto come valore p. Questo numero è molto importante per la conclusione del nostro test. I valori di P sono correlati alla statistica del test e ci forniscono una misurazione dell'evidenza rispetto all'ipotesi nulla.
Le prove di significato statistico iniziano tutte con un'ipotesi nulla e alternativa. L'ipotesi nulla è l'affermazione di nessun effetto o un'affermazione sullo stato delle cose comunemente accettato. L'ipotesi alternativa è ciò che stiamo cercando di dimostrare. L'ipotesi di lavoro in un test di ipotesi è che l'ipotesi nulla sia vera.
Assumeremo che le condizioni siano soddisfatte per il particolare test con cui stiamo lavorando. Un semplice campione casuale ci fornisce dati campione. Da questi dati possiamo calcolare una statistica di prova. Le statistiche dei test variano notevolmente a seconda dei parametri relativi al nostro test di ipotesi. Alcune statistiche di test comuni includono:
Le statistiche dei test sono utili, ma può essere più utile assegnare un valore p a queste statistiche. Un valore p è la probabilità che, se l'ipotesi nulla fosse vera, osserveremmo una statistica almeno estrema come quella osservata. Per calcolare un valore p utilizziamo il software o la tabella statistica appropriati che corrispondono alla nostra statistica di test.
Ad esempio, nel calcolo di a utilizzeremmo una distribuzione normale standard z statistica test. Valori di z con valori assoluti di grandi dimensioni (come quelli superiori a 2,5) non sono molto comuni e darebbero un piccolo valore p. Valori di z più vicini allo zero sono più comuni e darebbero valori p molto più grandi.
Come abbiamo notato, un valore p è una probabilità. Ciò significa che è un numero reale compreso tra 0 e 1. Mentre una statistica di prova è un modo per misurare quanto è estrema una statistica per un particolare campione, i valori di p sono un altro modo di misurare questo.
Quando otteniamo un dato dato statistico, la domanda che dovremmo sempre è: "Questo campione è come è solo per caso con una vera ipotesi nulla o l'ipotesi nulla è falsa?" Se il nostro valore p è piccolo, allora questo potrebbe significare una delle due cose:
In generale, minore è il valore p, maggiore è la prova che abbiamo contro la nostra ipotesi nulla.
Di quanto p-value abbiamo bisogno per respingere l'ipotesi nulla? La risposta è: "Dipende". Una regola pratica comune è che il valore p deve essere inferiore o uguale a 0,05, ma non c'è nulla di universale in questo valore.
In genere, prima di condurre un test di ipotesi, scegliamo un valore di soglia. Se abbiamo un valore p inferiore o uguale a questa soglia, respingiamo l'ipotesi nulla. Altrimenti non riusciamo a respingere l'ipotesi nulla. Questa soglia è chiamata livello di significatività del nostro test di ipotesi ed è indicata dalla lettera greca alfa. Non esiste alcun valore di alfa che definisce sempre un significato statistico.